Ethnicity ontologies#
lamindb provides access to the following public protein ontologies through lnschema-bionty:
Here we show how to access and search ethnicity ontologies to standardize new data.
Setup#
!lamin init --storage ./test-ethnicity --schema bionty
β
saved: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-12-22 11:24:41 UTC)
β
saved: Storage(uid='ZAI9vHXr', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-ethnicity', type='local', updated_at=2023-12-22 11:24:41 UTC, created_by_id=1)
π‘ loaded instance: testuser1/test-ethnicity
π‘ did not register local instance on hub
import lnschema_bionty as lb
import pandas as pd
# adds an entry "human" into an empty instance
lb.settings.organism = "human"
π‘ loaded instance: testuser1/test-ethnicity
Bionty objects#
Let us create a public knowledge accessor with bionty()
, which chooses a default public knowledge source from BiontySource
. Itβs a Bionty object, which you can think about as a less-capable registry:
ethnicity_bt = lb.Ethnicity.bionty()
ethnicity_bt
Ethnicity
Organism: human
Source: hancestro, 3.0
#terms: 342
π Ethnicity.df(): ontology reference table
π Ethnicity.lookup(): autocompletion of terms
π― Ethnicity.search(): free text search of terms
β
Ethnicity.validate(): strictly validate values
π§ Ethnicity.inspect(): full inspection of values
π½ Ethnicity.standardize(): convert to standardized names
πͺ Ethnicity.diff(): difference between two versions
π Ethnicity.ontology: Pronto.Ontology object
As for registries, you can export the ontology as a DataFrame
:
df = ethnicity_bt.df()
df.head()
name | definition | synonyms | parents | |
---|---|---|---|---|
ontology_id | ||||
HANCESTRO:0002 | region | Any Geographic Area Greater Than An Individual... | geographical area | [] |
HANCESTRO:0003 | country | A Collective Generic Term That Refers Here To ... | None | [] |
HANCESTRO:0004 | ancestry category | Population Category Defined Using Ancestry Inf... | ancestral group | [] |
HANCESTRO:0005 | European | Includes Individuals Who Either Self-Report Or... | Caucasian|white | [HANCESTRO:0004] |
HANCESTRO:0006 | South Asian | Includes Individuals Who Either Self-Report Or... | None | [HANCESTRO:0008] |
Unlike registries, you can also export it as a Pronto object via ethnicity_bt.ontology
.
Look up terms#
As for registries, terms can be looked up with auto-complete:
lookup = ethnicity_bt.lookup()
The .
accessor provides normalized terms (lower case, only contains alphanumeric characters and underscores):
lookup.american
Ethnicity(ontology_id='HANCESTRO:0463', name='American', definition=None, synonyms=None, parents=array(['HANCESTRO:0566'], dtype=object))
To look up the exact original strings, convert the lookup object to dict and use the []
accessor:
lookup_dict = lookup.dict()
lookup_dict["American"]
Ethnicity(ontology_id='HANCESTRO:0463', name='American', definition=None, synonyms=None, parents=array(['HANCESTRO:0566'], dtype=object))
By default, the name
field is used to generate lookup keys. You can specify another field to look up:
lookup = ethnicity_bt.lookup(ethnicity_bt.ontology_id)
If multiple entries are matched, they are returned as a list:
lookup.hancestro_0463
Ethnicity(ontology_id='HANCESTRO:0463', name='American', definition=None, synonyms=None, parents=array(['HANCESTRO:0566'], dtype=object))
Search terms#
Search behaves in the same way as it does for registries:
ethnicity_bt = lb.Ethnicity.bionty()
ethnicity_bt.search("American").head(3)
ontology_id | definition | synonyms | parents | __ratio__ | |
---|---|---|---|---|---|
name | |||||
American | HANCESTRO:0463 | None | None | [HANCESTRO:0566] | 100.0 |
African American | HANCESTRO:0568 | None | None | [HANCESTRO:0016] | 90.0 |
African American or Afro-Caribbean | HANCESTRO:0016 | Includes Individuals Who Either Self-Report Or... | None | [HANCESTRO:0004] | 90.0 |
By default, search also covers synonyms:
ethnicity_bt.search("Caucasian").head(3)
ontology_id | definition | synonyms | parents | __ratio__ | |
---|---|---|---|---|---|
name | |||||
European | HANCESTRO:0005 | Includes Individuals Who Either Self-Report Or... | Caucasian|white | [HANCESTRO:0004] | 100.0 |
Asian | HANCESTRO:0008 | Includes Individuals That Either Self-Report O... | Asian unspecified | [HANCESTRO:0004] | 90.0 |
Asia | HANCESTRO:0030 | None | None | [] | 90.0 |
Search another field (default is .name
):
ethnicity_bt.search(
"General characterisation of Ancestry of a population",
field=ethnicity_bt.definition,
).head()
ontology_id | name | synonyms | parents | __ratio__ | |
---|---|---|---|---|---|
definition | |||||
General Characterisation Of The Ancestry Of A Population Or Individual | HANCESTRO:0304 | ancestry status | None | [] | 85.245902 |
A Population With Increased Genetic Homogeneity And Reduced Genetic Variation Due To Cultural Or Geographic Isolation | HANCESTRO:0290 | genetically isolated population | founder population|population isolate | [HANCESTRO:0004] | 42.857143 |
Includes Individuals Who Either Self-Report Or Have Been Described By Authors As Singaporean Indian. | HANCESTRO:0598 | Singaporean Indian | None | [HANCESTRO:0487] | 39.735099 |
Includes Individuals Who Either Self-Report Or Have Been Described By Authors As Singaporean Malay. | HANCESTRO:0597 | Singaporean Malay | None | [HANCESTRO:0007] | 38.666667 |
Population Category Defined Using Ancestry Informative Markers (Aims) Based On Genetic/Genomic Data | HANCESTRO:0004 | ancestry category | ancestral group | [] | 38.410596 |
Standardize ethnicity identifiers#
Let us generate a DataFrame
that stores a number of ethnicity identifiers, some of which corrupted:
df_orig = pd.DataFrame(
index=[
"Mende",
"European",
"South Asian",
"Arab",
"This ethnicity does not exist",
]
)
df_orig
Mende |
---|
European |
South Asian |
Arab |
This ethnicity does not exist |
We can check whether any of our values are validated against the ontology reference:
validated = ethnicity_bt.validate(df_orig.index, ethnicity_bt.name)
df_orig.index[~validated]
β 1 term (20.00%) is not validated: This ethnicity does not exist
Index(['This ethnicity does not exist'], dtype='object')
Ontology source versions#
For any given entity, we can choose from a number of versions:
lb.BiontySource.filter(entity="Ethnicity").df()
uid | entity | organism | currently_used | source | source_name | version | url | md5 | source_website | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||
50 | clid | Ethnicity | human | True | hancestro | Human Ancestry Ontology | 3.0 | https://github.com/EBISPOT/hancestro/raw/3.0/h... | 76dd9efda9c2abd4bc32fc57c0b755dd | https://github.com/EBISPOT/hancestro | 2023-12-22 11:24:41.807896+00:00 | 1 |
When instantiating a Bionty object, we can choose a source or version:
bionty_source = lb.BiontySource.filter(
source="hancestro", version="3.0", organism="human"
).one()
ethnicity_bt = lb.Ethnicity.bionty(bionty_source=bionty_source)
ethnicity_bt
Ethnicity
Organism: human
Source: hancestro, 3.0
#terms: 342
π Ethnicity.df(): ontology reference table
π Ethnicity.lookup(): autocompletion of terms
π― Ethnicity.search(): free text search of terms
β
Ethnicity.validate(): strictly validate values
π§ Ethnicity.inspect(): full inspection of values
π½ Ethnicity.standardize(): convert to standardized names
πͺ Ethnicity.diff(): difference between two versions
π Ethnicity.ontology: Pronto.Ontology object
The currently used ontologies can be displayed using:
lb.BiontySource.filter(currently_used=True).df()
uid | entity | organism | currently_used | source | source_name | version | url | md5 | source_website | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||
1 | zvGR | Organism | vertebrates | True | ensembl | Ensembl | release-110 | https://ftp.ensembl.org/pub/release-110/specie... | f3faf95648d3a2b50fd3625456739706 | https://www.ensembl.org | 2023-12-22 11:24:41.806211+00:00 | 1 |
4 | TE9h | Organism | bacteria | True | ensembl | Ensembl | release-57 | https://ftp.ensemblgenomes.ebi.ac.uk/pub/bacte... | ee28510ed5586ea7ab4495717c96efc8 | https://www.ensembl.org | 2023-12-22 11:24:41.806336+00:00 | 1 |
5 | OZIG | Organism | fungi | True | ensembl | Ensembl | release-57 | http://ftp.ensemblgenomes.org/pub/fungi/releas... | dbcde58f4396ab8b2480f7fe9f83df8a | https://www.ensembl.org | 2023-12-22 11:24:41.806371+00:00 | 1 |
6 | W07m | Organism | metazoa | True | ensembl | Ensembl | release-57 | http://ftp.ensemblgenomes.org/pub/metazoa/rele... | 424636a574fec078a61cbdddb05f9132 | https://www.ensembl.org | 2023-12-22 11:24:41.806408+00:00 | 1 |
7 | AVh3 | Organism | plants | True | ensembl | Ensembl | release-57 | https://ftp.ensemblgenomes.ebi.ac.uk/pub/plant... | eadaa1f3e527e4c3940c90c7fa5c8bf4 | https://www.ensembl.org | 2023-12-22 11:24:41.806473+00:00 | 1 |
8 | MdBu | Organism | all | True | ncbitaxon | NCBItaxon Ontology | 2023-06-20 | s3://bionty-assets/df_all__ncbitaxon__2023-06-... | 00d97ba65627f1cd65636d2df22ea76c | https://github.com/obophenotype/ncbitaxon | 2023-12-22 11:24:41.806515+00:00 | 1 |
9 | o36k | Gene | human | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_human__ensembl__release-... | 832f3947e83664588d419608a469b528 | https://www.ensembl.org | 2023-12-22 11:24:41.806550+00:00 | 1 |
11 | VTEw | Gene | mouse | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_mouse__ensembl__release-... | fa4ce130f2929aefd7ac3bc8eaf0c4de | https://www.ensembl.org | 2023-12-22 11:24:41.806620+00:00 | 1 |
13 | Uhnp | Gene | saccharomyces cerevisiae | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_saccharomyces cerevisiae... | 2e59495a3e87ea6575e408697dd73459 | https://www.ensembl.org | 2023-12-22 11:24:41.806686+00:00 | 1 |
14 | 000Q | Protein | human | True | uniprot | Uniprot | 2023-03 | s3://bionty-assets/df_human__uniprot__2023-03_... | 1c46e85c6faf5eff3de5b4e1e4edc4d3 | https://www.uniprot.org | 2023-12-22 11:24:41.806719+00:00 | 1 |
16 | tD7O | Protein | mouse | True | uniprot | Uniprot | 2023-03 | s3://bionty-assets/df_mouse__uniprot__2023-03_... | 9d5e9a8225011d3218e10f9bbb96a46c | https://www.uniprot.org | 2023-12-22 11:24:41.806784+00:00 | 1 |
18 | vqWI | CellMarker | human | True | cellmarker | CellMarker | 2.0 | s3://bionty-assets/human_cellmarker_2.0_CellMa... | d565d4a542a5c7e7a06255975358e4f4 | http://bio-bigdata.hrbmu.edu.cn/CellMarker | 2023-12-22 11:24:41.806850+00:00 | 1 |
19 | ypPK | CellMarker | mouse | True | cellmarker | CellMarker | 2.0 | s3://bionty-assets/mouse_cellmarker_2.0_CellMa... | 189586732c63be949e40dfa6a3636105 | http://bio-bigdata.hrbmu.edu.cn/CellMarker | 2023-12-22 11:24:41.806883+00:00 | 1 |
20 | 2Zjk | CellLine | all | True | clo | Cell Line Ontology | 2022-03-21 | https://data.bioontology.org/ontologies/CLO/su... | ea58a1010b7e745702a8397a526b3a33 | https://bioportal.bioontology.org/ontologies/CLO | 2023-12-22 11:24:41.806915+00:00 | 1 |
21 | 4shh | CellType | all | True | cl | Cell Ontology | 2023-08-24 | http://purl.obolibrary.org/obo/cl/releases/202... | 46e7dd89421f1255cf0191eca1548f73 | https://obophenotype.github.io/cell-ontology | 2023-12-22 11:24:41.806948+00:00 | 1 |
25 | LmWQ | Tissue | all | True | uberon | Uberon multi-species anatomy ontology | 2023-09-05 | http://purl.obolibrary.org/obo/uberon/releases... | abcee3ede566d1311d758b853ccdf5aa | http://obophenotype.github.io/uberon | 2023-12-22 11:24:41.807078+00:00 | 1 |
29 | zMWv | Disease | all | True | mondo | Mondo Disease Ontology | 2023-08-02 | http://purl.obolibrary.org/obo/mondo/releases/... | 7f33767422042eec29f08b501fc851db | https://mondo.monarchinitiative.org | 2023-12-22 11:24:41.807209+00:00 | 1 |
33 | cxPr | Disease | human | True | doid | Human Disease Ontology | 2023-03-31 | http://purl.obolibrary.org/obo/doid/releases/2... | 64f083a1e47867c307c8eae308afc3bb | https://disease-ontology.org | 2023-12-22 11:24:41.807339+00:00 | 1 |
35 | 2wto | ExperimentalFactor | all | True | efo | The Experimental Factor Ontology | 3.57.0 | http://www.ebi.ac.uk/efo/releases/v3.57.0/efo.owl | 2ecafc69b3aba7bdb31ad99438505c05 | https://bioportal.bioontology.org/ontologies/EFO | 2023-12-22 11:24:41.807405+00:00 | 1 |
37 | 3SSF | Phenotype | human | True | hp | Human Phenotype Ontology | 2023-06-17 | https://github.com/obophenotype/human-phenotyp... | 65e8d96bc81deb893163927063b10c06 | https://hpo.jax.org | 2023-12-22 11:24:41.807471+00:00 | 1 |
40 | nwdt | Phenotype | mammalian | True | mp | Mammalian Phenotype Ontology | 2023-05-31 | https://github.com/mgijax/mammalian-phenotype-... | be89052cf6d9c0b6197038fe347ef293 | https://github.com/mgijax/mammalian-phenotype-... | 2023-12-22 11:24:41.807569+00:00 | 1 |
41 | zAfB | Phenotype | zebrafish | True | zp | Zebrafish Phenotype Ontology | 2022-12-17 | https://github.com/obophenotype/zebrafish-phen... | 03430b567bf153216c0fa4c3440b3b24 | https://github.com/obophenotype/zebrafish-phen... | 2023-12-22 11:24:41.807601+00:00 | 1 |
43 | p1co | Phenotype | all | True | pato | Phenotype And Trait Ontology | 2023-05-18 | http://purl.obolibrary.org/obo/pato/releases/2... | bd472f4971492109493d4ad8a779a8dd | https://github.com/pato-ontology/pato | 2023-12-22 11:24:41.807667+00:00 | 1 |
44 | h0rU | Pathway | all | True | go | Gene Ontology | 2023-05-10 | https://data.bioontology.org/ontologies/GO/sub... | e9845499eadaef2418f464cd7e9ac92e | http://geneontology.org | 2023-12-22 11:24:41.807700+00:00 | 1 |
46 | fxHJ | BFXPipeline | all | True | lamin | Bioinformatics Pipeline | 1.0.0 | s3://bionty-assets/bfxpipelines.json | a7eff57a256994692fba46e0199ffc94 | https://lamin.ai | 2023-12-22 11:24:41.807765+00:00 | 1 |
47 | chfO | Drug | all | True | dron | Drug Ontology | 2023-03-10 | https://data.bioontology.org/ontologies/DRON/s... | 75e86011158fae76bb46d96662a33ba3 | https://bioportal.bioontology.org/ontologies/DRON | 2023-12-22 11:24:41.807798+00:00 | 1 |
48 | 7JhT | DevelopmentalStage | human | True | hsapdv | Human Developmental Stages | 2020-03-10 | http://aber-owl.net/media/ontologies/HSAPDV/11... | 52181d59df84578ed69214a5cb614036 | https://github.com/obophenotype/developmental-... | 2023-12-22 11:24:41.807831+00:00 | 1 |
49 | JIKv | DevelopmentalStage | mouse | True | mmusdv | Mouse Developmental Stages | 2020-03-10 | http://aber-owl.net/media/ontologies/MMUSDV/9/... | 5bef72395d853c7f65450e6c2a1fc653 | https://github.com/obophenotype/developmental-... | 2023-12-22 11:24:41.807863+00:00 | 1 |
50 | clid | Ethnicity | human | True | hancestro | Human Ancestry Ontology | 3.0 | https://github.com/EBISPOT/hancestro/raw/3.0/h... | 76dd9efda9c2abd4bc32fc57c0b755dd | https://github.com/EBISPOT/hancestro | 2023-12-22 11:24:41.807896+00:00 | 1 |
51 | rsbG | BioSample | all | True | ncbi | NCBI BioSample attributes | 2023-09 | s3://bionty-assets/df_all__ncbi__2023-09__BioS... | 918db9bd1734b97c596c67d9654a4126 | https://www.ncbi.nlm.nih.gov/biosample/docs/at... | 2023-12-22 11:24:41.807929+00:00 | 1 |
!lamin delete --force test-ethnicity
!rm -r test-ethnicity
π‘ deleting instance testuser1/test-ethnicity
β
deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-ethnicity.env
β
instance cache deleted
β
deleted '.lndb' sqlite file
β consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-ethnicity