Organism ontologies#
lamindb provides access to the following public organism ontologies through lnschema-bionty:
Here we show how to access and search organism ontologies to standardize new data.
Setup#
!lamin init --storage ./test-organism --schema bionty
β
saved: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-12-22 11:25:08 UTC)
β
saved: Storage(uid='ssU2HVnH', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-organism', type='local', updated_at=2023-12-22 11:25:08 UTC, created_by_id=1)
π‘ loaded instance: testuser1/test-organism
π‘ did not register local instance on hub
import lnschema_bionty as lb
import pandas as pd
Bionty objects#
Let us create a public knowledge accessor with bionty()
, which chooses a default public knowledge source from BiontySource
. Itβs a Bionty object, which you can think about as a less-capable registry:
organism_bt = lb.Organism.bionty()
organism_bt
π‘ loaded instance: testuser1/test-organism
Organism
Organism: vertebrates
Source: ensembl, release-110
#terms: 317
π Organism.df(): ontology reference table
π Organism.lookup(): autocompletion of terms
π― Organism.search(): free text search of terms
β
Organism.validate(): strictly validate values
π§ Organism.inspect(): full inspection of values
π½ Organism.standardize(): convert to standardized names
πͺ Organism.diff(): difference between two versions
π Organism.ontology: Pronto.Ontology object
As for registries, you can export the ontology as a DataFrame
:
df = organism_bt.df()
df.head()
scientific_name | division | ontology_id | assembly | assembly_accession | genebuild | variation | microarray | pan_compara | peptide_compara | genome_alignments | other_alignments | core_db | species_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
name | ||||||||||||||
spiny chromis | acanthochromis_polyacanthus | EnsemblVertebrates | NCBITaxon:80966 | ASM210954v1 | GCA_002109545.1 | 2018-05-Ensembl/2020-03 | N | N | N | Y | Y | Y | acanthochromis_polyacanthus_core_110_1 | 1 |
eurasian sparrowhawk | accipiter_nisus | EnsemblVertebrates | NCBITaxon:211598 | Accipiter_nisus_ver1.0 | GCA_004320145.1 | 2019-07-Ensembl/2019-09 | N | N | N | N | N | Y | accipiter_nisus_core_110_1 | 1 |
giant panda | ailuropoda_melanoleuca | EnsemblVertebrates | NCBITaxon:9646 | ASM200744v2 | GCA_002007445.2 | 2020-05-Ensembl/2020-06 | N | N | N | Y | Y | Y | ailuropoda_melanoleuca_core_110_2 | 1 |
yellow-billed parrot | amazona_collaria | EnsemblVertebrates | NCBITaxon:241587 | ASM394721v1 | GCA_003947215.1 | 2019-07-Ensembl/2019-09 | N | N | N | N | N | Y | amazona_collaria_core_110_1 | 1 |
midas cichlid | amphilophus_citrinellus | EnsemblVertebrates | NCBITaxon:61819 | Midas_v5 | GCA_000751415.1 | 2018-05-Ensembl/2018-07 | N | N | N | Y | Y | Y | amphilophus_citrinellus_core_110_5 | 1 |
Unlike registries, you can also export it as a Pronto object via organism_bt.ontology
.
Look up terms#
As for registries, terms can be looked up with auto-complete:
lookup = organism_bt.lookup()
The .
accessor provides normalized terms (lower case, only contains alphanumeric characters and underscores):
lookup.human
Organism(name='human', scientific_name='homo_sapiens', division='EnsemblVertebrates', ontology_id='NCBITaxon:9606', assembly='GRCh38.p14', assembly_accession='GCA_000001405.29', genebuild='2014-01-Ensembl/2023-03', variation='Y', microarray='Y', pan_compara='Y', peptide_compara='Y', genome_alignments='Y', other_alignments='Y', core_db='homo_sapiens_core_110_38', species_id=1)
To look up the exact original strings, convert the lookup object to dict and use the []
accessor:
lookup_dict = lookup.dict()
lookup_dict["human"]
Organism(name='human', scientific_name='homo_sapiens', division='EnsemblVertebrates', ontology_id='NCBITaxon:9606', assembly='GRCh38.p14', assembly_accession='GCA_000001405.29', genebuild='2014-01-Ensembl/2023-03', variation='Y', microarray='Y', pan_compara='Y', peptide_compara='Y', genome_alignments='Y', other_alignments='Y', core_db='homo_sapiens_core_110_38', species_id=1)
By default, the name
field is used to generate lookup keys. You can specify another field to look up:
lookup = organism_bt.lookup(organism_bt.scientific_name)
lookup.homo_sapiens
Organism(name='human', scientific_name='homo_sapiens', division='EnsemblVertebrates', ontology_id='NCBITaxon:9606', assembly='GRCh38.p14', assembly_accession='GCA_000001405.29', genebuild='2014-01-Ensembl/2023-03', variation='Y', microarray='Y', pan_compara='Y', peptide_compara='Y', genome_alignments='Y', other_alignments='Y', core_db='homo_sapiens_core_110_38', species_id=1)
Search terms#
Search behaves in the same way as it does for registries:
organism_bt = lb.Organism.bionty()
organism_bt.search("human").head(1)
scientific_name | division | ontology_id | assembly | assembly_accession | genebuild | variation | microarray | pan_compara | peptide_compara | genome_alignments | other_alignments | core_db | species_id | __ratio__ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
name | |||||||||||||||
human | homo_sapiens | EnsemblVertebrates | NCBITaxon:9606 | GRCh38.p14 | GCA_000001405.29 | 2014-01-Ensembl/2023-03 | Y | Y | Y | Y | Y | Y | homo_sapiens_core_110_38 | 1 | 100.0 |
Search another field (default is .name
):
organism_bt.search("sapiens", field=organism_bt.scientific_name).head(2)
name | division | ontology_id | assembly | assembly_accession | genebuild | variation | microarray | pan_compara | peptide_compara | genome_alignments | other_alignments | core_db | species_id | __ratio__ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
scientific_name | |||||||||||||||
homo_sapiens | human | EnsemblVertebrates | NCBITaxon:9606 | GRCh38.p14 | GCA_000001405.29 | 2014-01-Ensembl/2023-03 | Y | Y | Y | Y | Y | Y | homo_sapiens_core_110_38 | 1 | 90.000000 |
procavia_capensis | hyrax | EnsemblVertebrates | NCBITaxon:9813 | proCap1 | None | 2008-11-Ensembl/2013-04 | N | N | N | Y | Y | Y | procavia_capensis_core_110_1 | 1 | 65.769231 |
Standardize organism identifiers#
Let us generate a DataFrame
that stores a number of organism identifiers, some of which corrupted:
df_orig = pd.DataFrame(
index=[
"spiny chromis",
"silver-eye",
"platyfish",
"california sea lion",
"This organism does not exist",
]
)
df_orig
spiny chromis |
---|
silver-eye |
platyfish |
california sea lion |
This organism does not exist |
We can check whether any of our values are validated against the ontology reference:
validated = organism_bt.validate(df_orig.index, organism_bt.name)
df_orig.index[~validated]
β
4 terms (80.00%) are validated
β 1 term (20.00%) is not validated: This organism does not exist
Index(['This organism does not exist'], dtype='object')
Ontology source versions#
For any given entity, we can choose from a number of versions:
lb.BiontySource.filter(entity="Organism").df()
uid | entity | organism | currently_used | source | source_name | version | url | md5 | source_website | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||
1 | zvGR | Organism | vertebrates | True | ensembl | Ensembl | release-110 | https://ftp.ensembl.org/pub/release-110/specie... | f3faf95648d3a2b50fd3625456739706 | https://www.ensembl.org | 2023-12-22 11:25:08.565875+00:00 | 1 |
2 | ClG4 | Organism | vertebrates | False | ensembl | Ensembl | release-109 | https://ftp.ensembl.org/pub/release-109/specie... | 7595bb989f5fec07eaca5e2138f67bd4 | https://www.ensembl.org | 2023-12-22 11:25:08.565928+00:00 | 1 |
3 | biFw | Organism | vertebrates | False | ensembl | Ensembl | release-108 | https://ftp.ensembl.org/pub/release-108/specie... | d97c1ee302e4072f5f5c7850eff0b642 | https://www.ensembl.org | 2023-12-22 11:25:08.565964+00:00 | 1 |
4 | TE9h | Organism | bacteria | True | ensembl | Ensembl | release-57 | https://ftp.ensemblgenomes.ebi.ac.uk/pub/bacte... | ee28510ed5586ea7ab4495717c96efc8 | https://www.ensembl.org | 2023-12-22 11:25:08.566000+00:00 | 1 |
5 | OZIG | Organism | fungi | True | ensembl | Ensembl | release-57 | http://ftp.ensemblgenomes.org/pub/fungi/releas... | dbcde58f4396ab8b2480f7fe9f83df8a | https://www.ensembl.org | 2023-12-22 11:25:08.566034+00:00 | 1 |
6 | W07m | Organism | metazoa | True | ensembl | Ensembl | release-57 | http://ftp.ensemblgenomes.org/pub/metazoa/rele... | 424636a574fec078a61cbdddb05f9132 | https://www.ensembl.org | 2023-12-22 11:25:08.566068+00:00 | 1 |
7 | AVh3 | Organism | plants | True | ensembl | Ensembl | release-57 | https://ftp.ensemblgenomes.ebi.ac.uk/pub/plant... | eadaa1f3e527e4c3940c90c7fa5c8bf4 | https://www.ensembl.org | 2023-12-22 11:25:08.566102+00:00 | 1 |
8 | MdBu | Organism | all | True | ncbitaxon | NCBItaxon Ontology | 2023-06-20 | s3://bionty-assets/df_all__ncbitaxon__2023-06-... | 00d97ba65627f1cd65636d2df22ea76c | https://github.com/obophenotype/ncbitaxon | 2023-12-22 11:25:08.566136+00:00 | 1 |
When instantiating a Bionty object, we can choose a source or version:
bionty_source = lb.BiontySource.filter(
source="ensembl", version="release-110", organism="vertebrates"
).one()
organism_bt = lb.Organism.bionty(bionty_source=bionty_source)
organism_bt
Organism
Organism: vertebrates
Source: ensembl, release-110
#terms: 317
π Organism.df(): ontology reference table
π Organism.lookup(): autocompletion of terms
π― Organism.search(): free text search of terms
β
Organism.validate(): strictly validate values
π§ Organism.inspect(): full inspection of values
π½ Organism.standardize(): convert to standardized names
πͺ Organism.diff(): difference between two versions
π Organism.ontology: Pronto.Ontology object
The currently used ontologies can be displayed using:
lb.BiontySource.filter(currently_used=True).df()
uid | entity | organism | currently_used | source | source_name | version | url | md5 | source_website | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||
1 | zvGR | Organism | vertebrates | True | ensembl | Ensembl | release-110 | https://ftp.ensembl.org/pub/release-110/specie... | f3faf95648d3a2b50fd3625456739706 | https://www.ensembl.org | 2023-12-22 11:25:08.565875+00:00 | 1 |
4 | TE9h | Organism | bacteria | True | ensembl | Ensembl | release-57 | https://ftp.ensemblgenomes.ebi.ac.uk/pub/bacte... | ee28510ed5586ea7ab4495717c96efc8 | https://www.ensembl.org | 2023-12-22 11:25:08.566000+00:00 | 1 |
5 | OZIG | Organism | fungi | True | ensembl | Ensembl | release-57 | http://ftp.ensemblgenomes.org/pub/fungi/releas... | dbcde58f4396ab8b2480f7fe9f83df8a | https://www.ensembl.org | 2023-12-22 11:25:08.566034+00:00 | 1 |
6 | W07m | Organism | metazoa | True | ensembl | Ensembl | release-57 | http://ftp.ensemblgenomes.org/pub/metazoa/rele... | 424636a574fec078a61cbdddb05f9132 | https://www.ensembl.org | 2023-12-22 11:25:08.566068+00:00 | 1 |
7 | AVh3 | Organism | plants | True | ensembl | Ensembl | release-57 | https://ftp.ensemblgenomes.ebi.ac.uk/pub/plant... | eadaa1f3e527e4c3940c90c7fa5c8bf4 | https://www.ensembl.org | 2023-12-22 11:25:08.566102+00:00 | 1 |
8 | MdBu | Organism | all | True | ncbitaxon | NCBItaxon Ontology | 2023-06-20 | s3://bionty-assets/df_all__ncbitaxon__2023-06-... | 00d97ba65627f1cd65636d2df22ea76c | https://github.com/obophenotype/ncbitaxon | 2023-12-22 11:25:08.566136+00:00 | 1 |
9 | o36k | Gene | human | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_human__ensembl__release-... | 832f3947e83664588d419608a469b528 | https://www.ensembl.org | 2023-12-22 11:25:08.566169+00:00 | 1 |
11 | VTEw | Gene | mouse | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_mouse__ensembl__release-... | fa4ce130f2929aefd7ac3bc8eaf0c4de | https://www.ensembl.org | 2023-12-22 11:25:08.566239+00:00 | 1 |
13 | Uhnp | Gene | saccharomyces cerevisiae | True | ensembl | Ensembl | release-110 | s3://bionty-assets/df_saccharomyces cerevisiae... | 2e59495a3e87ea6575e408697dd73459 | https://www.ensembl.org | 2023-12-22 11:25:08.566306+00:00 | 1 |
14 | 000Q | Protein | human | True | uniprot | Uniprot | 2023-03 | s3://bionty-assets/df_human__uniprot__2023-03_... | 1c46e85c6faf5eff3de5b4e1e4edc4d3 | https://www.uniprot.org | 2023-12-22 11:25:08.566339+00:00 | 1 |
16 | tD7O | Protein | mouse | True | uniprot | Uniprot | 2023-03 | s3://bionty-assets/df_mouse__uniprot__2023-03_... | 9d5e9a8225011d3218e10f9bbb96a46c | https://www.uniprot.org | 2023-12-22 11:25:08.566405+00:00 | 1 |
18 | vqWI | CellMarker | human | True | cellmarker | CellMarker | 2.0 | s3://bionty-assets/human_cellmarker_2.0_CellMa... | d565d4a542a5c7e7a06255975358e4f4 | http://bio-bigdata.hrbmu.edu.cn/CellMarker | 2023-12-22 11:25:08.566471+00:00 | 1 |
19 | ypPK | CellMarker | mouse | True | cellmarker | CellMarker | 2.0 | s3://bionty-assets/mouse_cellmarker_2.0_CellMa... | 189586732c63be949e40dfa6a3636105 | http://bio-bigdata.hrbmu.edu.cn/CellMarker | 2023-12-22 11:25:08.566504+00:00 | 1 |
20 | 2Zjk | CellLine | all | True | clo | Cell Line Ontology | 2022-03-21 | https://data.bioontology.org/ontologies/CLO/su... | ea58a1010b7e745702a8397a526b3a33 | https://bioportal.bioontology.org/ontologies/CLO | 2023-12-22 11:25:08.566537+00:00 | 1 |
21 | 4shh | CellType | all | True | cl | Cell Ontology | 2023-08-24 | http://purl.obolibrary.org/obo/cl/releases/202... | 46e7dd89421f1255cf0191eca1548f73 | https://obophenotype.github.io/cell-ontology | 2023-12-22 11:25:08.566570+00:00 | 1 |
25 | LmWQ | Tissue | all | True | uberon | Uberon multi-species anatomy ontology | 2023-09-05 | http://purl.obolibrary.org/obo/uberon/releases... | abcee3ede566d1311d758b853ccdf5aa | http://obophenotype.github.io/uberon | 2023-12-22 11:25:08.566702+00:00 | 1 |
29 | zMWv | Disease | all | True | mondo | Mondo Disease Ontology | 2023-08-02 | http://purl.obolibrary.org/obo/mondo/releases/... | 7f33767422042eec29f08b501fc851db | https://mondo.monarchinitiative.org | 2023-12-22 11:25:08.566833+00:00 | 1 |
33 | cxPr | Disease | human | True | doid | Human Disease Ontology | 2023-03-31 | http://purl.obolibrary.org/obo/doid/releases/2... | 64f083a1e47867c307c8eae308afc3bb | https://disease-ontology.org | 2023-12-22 11:25:08.566968+00:00 | 1 |
35 | 2wto | ExperimentalFactor | all | True | efo | The Experimental Factor Ontology | 3.57.0 | http://www.ebi.ac.uk/efo/releases/v3.57.0/efo.owl | 2ecafc69b3aba7bdb31ad99438505c05 | https://bioportal.bioontology.org/ontologies/EFO | 2023-12-22 11:25:08.567035+00:00 | 1 |
37 | 3SSF | Phenotype | human | True | hp | Human Phenotype Ontology | 2023-06-17 | https://github.com/obophenotype/human-phenotyp... | 65e8d96bc81deb893163927063b10c06 | https://hpo.jax.org | 2023-12-22 11:25:08.567101+00:00 | 1 |
40 | nwdt | Phenotype | mammalian | True | mp | Mammalian Phenotype Ontology | 2023-05-31 | https://github.com/mgijax/mammalian-phenotype-... | be89052cf6d9c0b6197038fe347ef293 | https://github.com/mgijax/mammalian-phenotype-... | 2023-12-22 11:25:08.567200+00:00 | 1 |
41 | zAfB | Phenotype | zebrafish | True | zp | Zebrafish Phenotype Ontology | 2022-12-17 | https://github.com/obophenotype/zebrafish-phen... | 03430b567bf153216c0fa4c3440b3b24 | https://github.com/obophenotype/zebrafish-phen... | 2023-12-22 11:25:08.567232+00:00 | 1 |
43 | p1co | Phenotype | all | True | pato | Phenotype And Trait Ontology | 2023-05-18 | http://purl.obolibrary.org/obo/pato/releases/2... | bd472f4971492109493d4ad8a779a8dd | https://github.com/pato-ontology/pato | 2023-12-22 11:25:08.567298+00:00 | 1 |
44 | h0rU | Pathway | all | True | go | Gene Ontology | 2023-05-10 | https://data.bioontology.org/ontologies/GO/sub... | e9845499eadaef2418f464cd7e9ac92e | http://geneontology.org | 2023-12-22 11:25:08.567331+00:00 | 1 |
46 | fxHJ | BFXPipeline | all | True | lamin | Bioinformatics Pipeline | 1.0.0 | s3://bionty-assets/bfxpipelines.json | a7eff57a256994692fba46e0199ffc94 | https://lamin.ai | 2023-12-22 11:25:08.567397+00:00 | 1 |
47 | chfO | Drug | all | True | dron | Drug Ontology | 2023-03-10 | https://data.bioontology.org/ontologies/DRON/s... | 75e86011158fae76bb46d96662a33ba3 | https://bioportal.bioontology.org/ontologies/DRON | 2023-12-22 11:25:08.567430+00:00 | 1 |
48 | 7JhT | DevelopmentalStage | human | True | hsapdv | Human Developmental Stages | 2020-03-10 | http://aber-owl.net/media/ontologies/HSAPDV/11... | 52181d59df84578ed69214a5cb614036 | https://github.com/obophenotype/developmental-... | 2023-12-22 11:25:08.567463+00:00 | 1 |
49 | JIKv | DevelopmentalStage | mouse | True | mmusdv | Mouse Developmental Stages | 2020-03-10 | http://aber-owl.net/media/ontologies/MMUSDV/9/... | 5bef72395d853c7f65450e6c2a1fc653 | https://github.com/obophenotype/developmental-... | 2023-12-22 11:25:08.567497+00:00 | 1 |
50 | clid | Ethnicity | human | True | hancestro | Human Ancestry Ontology | 3.0 | https://github.com/EBISPOT/hancestro/raw/3.0/h... | 76dd9efda9c2abd4bc32fc57c0b755dd | https://github.com/EBISPOT/hancestro | 2023-12-22 11:25:08.567530+00:00 | 1 |
51 | rsbG | BioSample | all | True | ncbi | NCBI BioSample attributes | 2023-09 | s3://bionty-assets/df_all__ncbi__2023-09__BioS... | 918db9bd1734b97c596c67d9654a4126 | https://www.ncbi.nlm.nih.gov/biosample/docs/at... | 2023-12-22 11:25:08.567563+00:00 | 1 |
Show code cell content
!lamin delete --force test-organism
!rm -r test-organism
π‘ deleting instance testuser1/test-organism
β
deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-organism.env
β
instance cache deleted
β
deleted '.lndb' sqlite file
β consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-organism